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Abstract—This paper proposes polytope ARTMAP (PTAM), an
adaptive resonance theory (ART) network for classification tasks
which does not use the vigilance parameter. This feature is due
to the geometry of categories in PTAM, which are irregular poly-
topes whose borders approximate the borders among the output
predictions. During training, the categories expand only towards
the input pattern without category overlap. The category expan-
sion in PTAM is naturally limited by the other categories, and not
by the category size, so the vigilance is not necessary. PTAM works
in a fully automatic way for pattern classification tasks, without
any parameter tuning, so it is easier to employ for nonexpert users
than other classifiers. PTAM achieves lower error than the leading
ART networks on a complete collection of benchmark data sets,
except for noisy data, without any parameter optimization.

Index Terms—Adaptive resonance theory (ART) neural net-
works, general geometry categories, polytope category represen-
tation regions (CRRs), vigilance, parameter tuning.

I. INTRODUCTION

ADAPTIVE resonance theory (ART) constitutes a model
for the development of artificial neural networks which

is inspired by the studies of Grossberg and Carpenter [1].
These networks feature online, incremental learning, with
self-organized (ART1, ART2, ART3, fuzzy ART) and su-
pervised learning (fuzzy ARTMAP (FAM) [2], Gaussian
ARTMAP (GAM) [3], distributed ARTMAP (DAM) [4],
ellipsoid ARTMAP (EAM) [5], FasArt [6], and FAM with
relevance (FAMR) [7], among others). These models have been
widely used in many application fields, including robotics [8],
data mining [9], information fusion [10], data clustering [11],
multichannel pattern recognition [12], image classification
[13], etc. Default ARTMAP [14] compiles the basic structure
of an ARTMAP network.

Some drawbacks of ART networks have been identified in
the literature. The proliferation of internal categories is perhaps
the most important one [15], [16]. It has been associated with
the presence of noise [17] and with the inefficiency of the cate-
gory geometry [3], which requires an excessive number of cat-
egories in order to cover the input space. Category proliferation
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has been also associated [18] with overtraining, and cross vali-
dation [19] has been suggested as a solution. DAM [4] proposes
distributed learning as another solution to the category prolifer-
ation problem. Parrado-Hernández et al. [20] quantitatively an-
alyzed the influence of distributed learning in category prolifer-
ation, concluding that the reduction in the number of categories
created by DAM with respect to FAM depends on the geometry
of the output predictions in the data set. Specifically, DAM cre-
ates less categories than FAM in data sets with nonrectangular
category geometries, while the difference between them is low
in data sets with rectangular geometry.

The previous analysis suggests that category geometry is
an important factor in the performance and the number of
categories created by an ART network. Several ART models
have been proposed with nonrectangular category geometry,
given by the category choice function (CCF). GAM [3] uses
CCF with hyperellipsoidal symmetry. Hypersphere ARTMAP
(HAM) [21] and EAM [5] use hypersherical and hyperellip-
soidal internal category representation regions (CRRs) [22],
respectively. Despite of using nonhyperbox CRRs, the category
geometry in HAM and EAM1 is also preestablished (spherical
or ellipsoidal) by the CCF. However, if the geometric structure
of the input data (e.g., the borders among the output predic-
tions) is not similar to the CRR geometry, the network may
need more categories in order to learn the data. Thus, networks
with predefined CRR geometry are more suited to data sets
with similar geometric properties, e.g., rectangular geometries
for FAM-DAM, or ellipsoidal geometries for GAM, HAM, and
EAM, and their performance may decrease otherwise.

This paper goes one step beyond, and proposes to use cat-
egories whose geometry is not preestablished, but defined by
the training patterns. Our approach, called polytope ARTMAP
(PTAM) [23], uses categories which are irregular polytopes.
This geometry is more flexible than the predefined category ge-
ometries in order to approximate the borders among the de-
sired output predictions in the data set. Since the CRR geom-
etry in PTAM is not predefined, each category can cover only
the regions in the input space populated by patterns with its own
output prediction, so category overlap is not necessary. The vig-
ilance parameter can be removed, so PTAM does not need any
tuning parameter.

Simplex ARTMAP [24], a previous version of this work,
approximates general geometry by means of nonoverlapping
simplex categories, whose CCF is a sum of Gaussian functions,
and it does not use the vigilance parameter. However, the
Gaussian spread replaces vigilance as tuning parameter. On the

1In EAM, the hyperellipsoid ratio of lengths is also predefined by the non-
adaptive parameter �.
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other hand, the number of Gaussian functions required to cover
the simplex volume quickly increases with the dimension of the
input space, which hinders its application to high-dimensional
data sets. These limitations suggested to us to replace simplex
categories defined by Gaussian choice functions by polytope
categories, defined by hyperplanes whose vertices are selected
training patterns.

This paper is organized as follows. Section II explains the
main ideas of PTAM. Its detailed description is covered by
Section III. Sections IV and V compare the results obtained
by PTAM with other classifiers, including the leading ART
networks. Section VI discusses these results and Section VII
summarizes the main conclusions and future research lines.

II. OUTLINE OF PTAM

An internal category in the ART networks is usually defined
by a weight vector which represents the input patterns codified
by the category. The response of each internal category to an
input pattern is given by its CCF, which depends both on the
input pattern and on the category weight vector, and defines the
geometry of the CRR. The CCF is constant inside the CRR,
although some ART variants (FasArt [6] and adaptive fuzzy
classifier (AFC) [25]) feature categories with nonconstant CCF.
The network creates categories that approximate the borders
among the output predictions in the data set. This approxima-
tion is more accurate, and requires less categories, if the geome-
tries of the categories and the output predictions are similar. For
example, FAM and DAM probably need more categories than
EAM or HAM in order to achieve equal performance on a data
set with circular geometries. However, the categories in PTAM
are irregular polytopes delimited by hyperplanes which com-
pose a piecewise linear approximation to the border among the
output predictions. The category vertices are weight vectors se-
lected among previous training patterns in order to fit the border
among the output predictions. Each output prediction can be
associated to one or several polytopes. Irregular polytope cat-
egories are more flexible than categories with predefined geom-
etry to fit complex borders among the output predictions, so they
might achieve lower error. If these categories were more effi-
cient to discriminate among predictions, a lower number of cat-
egories could even be created. On the other hand, the number of
weight vectors is different for each category in PTAM, and it is
adaptive during training, as opposite to the other ART networks,
whose categories are defined by a fixed number of weight vec-
tors: category center and deviations in GAM, category center in
EAM, vector of ranges in each dimension in FAM, etc.

The calculation of the CCF for the polytope categories is
complex, specially for nonconvex geometries. For mathematical
simplicity, we represent each polytope as divided in several ad-
jacent simplexes. The polytope CCF is calculated using a choice
function for each simplex. The CCF is 1 if the input pattern falls
inside one of its simplexes. Otherwise, the CCF is and it de-
creases with the distance between the pattern and the polytope.

In the ART networks, and in the “fast learning” case (the most
usual), the resonant category [with prediction ] expands
towards the training pattern [with desired prediction ].
The predefined geometry forces not only to expand towards
, but also in other directions (Fig. 1). Thus, may cover not

Fig. 1. Fast learning with category expansion with (a) FAM in IR , (b) FAM in
IR , (c) HAM in IR , and (d) EAM in IR . The dashed line is the new category
after learning. This category includes regions not in the direction (shadowed in
the figure) from the old category to the input pattern.

Fig. 2. (a) FAM learning in IR . When category 1 learns the input pattern, while
keeping its hyperbox shape, it overlaps with category 2, which has a different
associated prediction. (b) Polytope expansion in IR creating a new simplex
(triangle in IR ).

only the region between it and , which is supposed to be as-
sociated to prediction , but also other regions associated
to different predictions. When a training pattern is presented to
the network with desired prediction and it falls in
these regions, is selected as the winner, but match tracking
is invoked and another category with covers
that region (or a new category is created). is not updated,
so and overlap. Therefore, the predefined category ge-
ometry somehow leads to category overlap [Fig. 2(a)], because
categories invade regions with different predictions. The fuzzy
min–max network (FMMN) [26], [27] is a remarkable exception
among the ART-based networks, because it uses categories with
predefined geometry (hyperbox) which do not overlap if they
have different associated predictions. However, FMMN uses ge-
ometrical techniques in order to test the category overlap and, in
this case, the expanded category is contracted. Therefore, when
a category in FMMN tries to expand towards an input pattern,
the expansion may be not possible if the hyperbox shape leads
to cover regions populated by other predictions.

In the ART networks, when a test pattern falls inside an
overlap region, the small categories (the most specific ones) are
candidates for the resonance in the first place, due to its CCF
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TABLE I
NOMENCLATURE USED IN THIS PAPER

being higher than the CCF of the bigger categories. Thus, the
category size is used to select one among several overlapping
categories. Also, there is a maximum category size, which limits
the category expansion. Since categories can overlap, and they
can cover regions with a different desired prediction, if category
expansion were not limited, e.g., by this maximum size, the net-
work might create only one category for each output prediction,
covering the smallest volume which includes all the training pat-
terns with this prediction. This fact might reduce the discrimi-
nation ability of the network, e.g., if each prediction has several
nonadjacent regions, so the regions of the different predictions
are mixed. Therefore, the ART networks avoid the expansion if
the size of the expanded category surpasses the maximum size,
defined by the vigilance parameter.2 Unfortunately, there is no
automatic way to compute the upper limit on the category size
for a given data set, so the vigilance must be determined by trial
and error, often using cross validation. In the case of FMMN, the
overlap test (OT) limits the category expansion, but a maximum
category size, given by a parameter similar to the vigilance, is
also used. Both OT and maximum category size seem to have
the same objective, i.e., to limit the category expansion, so they
are somehow redundant. Therefore, FMMN could work without
vigilance, using only the OT to limit the category expansion.

We can conclude that predefined category geometries are
closely related with other typical features of ART networks,
such as category overlap, category size, and vigilance. PTAM
categories have no predefined geometry, although they are
internally managed as a connected set of adjacent simplexes.
Since the simplex covers the smallest volume defined by its
vertices, the polytope category can expand only towards the
input pattern—and not in other directions—by adding a new
simplex with vertices in the polytope and in the input pattern
[Fig. 2(b)]. The polytope categories can be built in such a way
that they cover only regions in the input space populated by
patterns with its equal output prediction (if there are patterns
with a different prediction between the category and the input
pattern, the category is adjusted as described later). If category

2Although the baseline vigilance value �� = 0 is often used for classification
tasks, the vigilance is raised to positive values when math tracking is invoked, so
there is a maximum category size until the presentation of the following training
pattern.

overlap is forbidden, the polytope categories can still expand,
as opposed to the other ART networks, because they cover
only the regions of the input space populated by patterns with
its own output prediction. Therefore, the internal categories of
PTAM are not allowed to overlap. Consequently, the category
size is not required to select one among several overlapping
categories, so the vigilance parameter is not necessary. Thus,
the expansion of a category is limited in a natural way by
the other categories, and not by the category size, which is a
somehow artificial criterion.

PTAM replaces the vigilance test in the ART networks by the
OT (Section III-B), similarly to FMMN: If a category overlaps
with other categories after the expansion towards the training
pattern, the category is reset and contracted, and a new category
is selected to codify the training pattern. Due to this test, a cate-
gory cannot cover regions populated by input patterns with a dif-
ferent prediction. The test limits the category expansion without
tuning parameters. Overlap among categories is tested by geo-
metric techniques, which are described in Section III-B and in
the Appendix III.

The OT itself is not enough to avoid category overlap. A cat-
egory with prediction can cover a region populated by
patterns with desired prediction if no pattern with
prediction fell inside that region in the past; so, the categories
must be able to correct previous wrong expansions. If a training
pattern with desired prediction were presented to the net-
work in the future, would fall inside the CRR of . In this
case, could be corrected removing the simplex which con-
tains . The simplex vertices which do not belong to any other
simplex would be used as new input patterns. This is done in the
category adjustment step (Section III-C).

If the active category passes the OT after the expansion
towards , the prediction test (PT, Section III-C) determines if
its desired prediction is equal to . The training pat-
tern is assigned to the category which passes both OT and PT
(Section III-D). If no category passes both tests, PTAM creates
a new one (Section III-E). Since the polytope categories have at
least one simplex, defined by vertices, training patterns
with desired prediction are required to create a new single-
simplex category. If the new category overlaps with other cate-
gories, or there are less than weight vectors with prediction
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Fig. 3. Polytope category learning examples for the “circle-in-the-square” (CIS) problem in IR . (a) No category expansion. The input pattern falls inside C ,
which is not expanded. (b) Creation of a new single-vector category. Less than n = 2 weight vectors are connectable from I in C : C is not expanded and I
creates a new single-vector category C with w = I. (c) Creation of a new simplex. Exactly n weight vectors are connectable from I, and C expands
towards I creating a new simplex S . (d) Vector replacement. The number of connectable weight vectors from I is 3(> n = 2): vector w is replaced by I
without volume loss for category C .

, a new single-vector category is created with the training
pattern .

III. PTAM ALGORITHM

Sections III-A–III-G describe the main steps of the training
and testing phases of PTAM. Table I summarizes the nomencla-
ture used in this paper.

A. CCF

Since each polytope category is composed by a set of sim-
plexes, its CCF is defined as the maximum of the choice
functions of its simplexes

(1)

is defined in such a way that if falls inside
the simplex : in this case, because
falls inside the CRR of . Otherwise, , and it
decreases with the distance between the input pattern
and the simplex. Thus, , where is the nearest
simplex from in . We separately describe both cases.

1) Input Pattern Inside a Simplex: The border of simplex
is given by hyperplanes . The hyper-
plane is defined by weight vectors
(simplex vertices), and it can be described by the following:

(2)

where if and and
if . The vector is the weight vector of simplex
which does not belong to hyperplane , and is given
by

(3)

Fig. 4. Examples of weight vector replacement for simplexes in IR (left
panels) and IR (right panels), without volume loss (upper panels) and with
volume loss (lower panels) of the simplex.

In (3), is the th component of (see
Appendix I). Equation (2) splits the input space in
two regions, one for which and another defined by

. The factor in (2) guarantees that
in the hyperplane side that is inside the simplex,

and outside the simplex. An input pattern falls
inside the simplex only if it falls in the inner side of the

hyperplanes of . This means that
if and only if .

2) Input Pattern Outside a Simplex: The choice function
of simplex must satisfy outside the

simplex and it must be decreasing with the distance between the
pattern and the simplex. We define , where

, so (note that and
, being the diagonal length of hyperbox

). We use an approximated value of since its ac-
curate calculation is computationally demanding for . Let
us consider the hypersphere centered in the centroid of the
simplex vertices , whose radius
is the maximum distance between this centroid and the simplex
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Fig. 5. Example of vector replacement condition in IR . (a) Patterns in regions A–C can replace weight vectors in the old simplex, but (b) patterns in regions 1–3
cannot do it, because the replacement reduces the simplex volume.

vertices . We consider the fol-
lowing two cases.

1) If the input pattern falls inside this hypersphere
is approximated by the distance be-

tween and its nearest hyperplane in the simplex (
falls outside , so )

(4)

where is the direction vector of hyperplane (see
Appendix II), and is the distance between

and . The set includes the indices of hyperplanes
in for which .

2) If falls outside the hypersphere, then the distance between
the pattern and the simplex is approximated by the min-
imum distance between and a vertex of

(5)

Finally, the activation function of simplex is given
by

otherwise
(6)

B. OT

The competition among polytope categories in PTAM selects
the category with the highest CCF, ,
which is not reset . If all the categories are reset

, a new category is created (Section III-E).
Otherwise, the OT determines if overlaps with the other cat-
egories when it expands towards . If there is an overlap,
does not pass the OT and it is reset . In this case, the
nonreset category with the highest CCF is selected by the com-
petitive process. If passes the OT, the associated prediction

for is tested in Section III-C.
There are several possible situations in the OT, depending on

the relative position of and , which are illustrated in Fig. 3.
1) falls inside the CRR of . In this case,

already covers , so it does not expand and the overlap

with other categories is not possible. Thus, passes the
OT [Fig. 3(a)].

2) falls outside the CRR of . Then, the
category can learn expanding towards , either in-
cluding as a weight vector or replacing a weight vector
of by . In both cases, new segments between and
vertices of must be created, which cannot overlap
with existing categories. Therefore, the set of
weight vectors in category which are connectable
from without the overlap must be created. Function

(line-simplex overlap), defined in (23)

(Appendix III-A), determines if the line segment over-
laps with simplex or if it does
not overlap . The set can be
defined as .
Depending on (cardinality of set ), there are
the following three cases.

a) If [Fig. 3(b)], there are not enough
connectable vertices from in to create a new sim-
plex between them, because segments from to
overlap with other categories. The category does
not pass the OT because it cannot expand towards
without the overlap.

b) If [Fig. 3(c)], a new simplex be-
longing to can be created using and the weight
vectors of (Section III-B1). If overlaps with
other categories, is removed and it does not pass
the OT. Otherwise, passes the OT.

c) If [Fig. 3(d)], some weight vector in
may be replaced by without volume loss for the

category (Section III-B2). If the modified simplexes
after vector replacement do not overlap with other cat-
egories, passes the OT.

Sections III-B1 and III-B2 give more details about cases in
Fig. 3(c) and (d).

1) Category Expansion: Creation of a New Simplex: When
, the OT determines if category can expand to-

wards creating a new simplex among them.
Overlap among and the other categories is tested by using
the function —overlap between simplex and cate-
gory—defined in (25) (Appendix III-B) which is

if simplex and category overlap and
, otherwise. If the former case holds for some is re-
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moved and does not pass the OT. Otherwise, passes the
OT. The category expansion increases the amount of informa-
tion stored by the network—number of weight vectors and sim-
plexes—similarly to the creation of new categories in classical
ART networks.

The new simplex could be very acute if its hyperplanes are
nearly parallel. In this case, the simplex volume is rather small,
and even when it covers regions populated by patterns with the
right prediction, it does not significantly increase the category
volume. Thus, categories with acute simplexes are not efficient
to cover the input space. On the other hand, if the acute sim-
plex covers a region with a different prediction, its small volume
makes it very improbable that future training patterns with that
prediction fall inside this simplex, so the category adjustment
step (Section III-C) cannot remove it. Therefore, acute sim-
plexes make the expansion of other categories difficult and con-
tribute to category proliferation. In these cases, PTAM does not
create acute simplexes, and the winner category is not expanded.

The volume of a simplex in can be computed by using
the Cayley–Menger determinant [28], but its calculation is
very complex. PTAM avoids the creation of acute simplexes
assuming that they have some small angle between their hy-
perplanes. Specifically, PTAM creates a new simplex with
weight vectors only if the angle
between vectors and is above a
threshold value . The angle is calculated using the
inner product of vectors and

(7)

The value of must be low in order to remove only the
acute simplexes. From graphical considerations about acute
simplexes in , we assumed that degree is a
reasonable threshold value.

2) Category Expansion: Weight Vector Replacement: If the
number of connectable weight vectors in category from
is higher than , the OT determines if some
weight vector in can be replaced by (Fig. 4). The cate-
gory does not pass OT if it overlaps with other categories
after the vector replacement. The replacement of weight vec-
tors does not increase the amount of information learnt by the
network—number of weight vectors and simplexes.

Fig. 4 shows that, depending on the relative position of a pat-
tern and a simplex, the replacement of a weight vector may re-
duce (lower panels) or not reduce (upper panels) the volume of
one or several simplexes. Fig. 5 shows in that a simplex loses
volume when the input pattern falls in regions 1–3 [Fig. 5(b)],
but not when it falls in regions A–C [Fig. 5(a)]. If falls in the
outer (out of the simplex) side of the hyperplanes which cross
at can replace without simplex volume loss. Otherwise,
the simplexes defined by lose volume [Fig. 5(b): falls in the
inner side of and ]. Let

be the set of hyperplanes in which contain the
vector . can replace in if

(8)

TABLE II
LIST OF DATA SETS USED IN THE EXPERIMENTAL WORK

(SEE SECTION IV FOR DETAILS)

Fig. 6. The 2-D data sets CIS, chess, T3, T4, T5, T6, and T7 used in the ex-
perimental work. In T6, the number of patterns of each category is proportional
to its size (75.8% outside the circles, 19.7% in the big circle, and 4.5% in the
small circle). In T7, the populations are 50%-30%-20% [20].

The function is defined in (2), and the function is
defined by if and , otherwise. If

falls in the inner side of some hyperplane ,
then and , so (8) is not fulfilled. If

, then verifies (8). The candidate
for replacement is the nearest weight vector from in
that satisfies (8) for each simplex containing . This
vector is replaced by only if these simplexes do not overlap
with the other categories after the vector replacement. This con-
dition means that [function

is defined in (25) in Appendix III-B],
. If no weight vector in satisfies this condition,

does not pass the OT.

C. PT and Category Adjustment

If passes the OT, the PT compares its associated prediction
with the desired prediction for the training pattern .

If passes the PT and the resonance step in
Section III-D is executed. Otherwise, does
not pass the PT, and it is reset . If , the input
pattern falls inside the CRR of , so the region covered by
is populated by patterns with . In this case, the sim-
plex which verifies is removed in order to adjust
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Fig. 7. Circles surrounding the Gaussian distributions, with radius 2� (� = 0:05 is the Gaussian spread) for the three overlap levels. The distance d between the
center of each circle and the unit square center (0.5, 0.5) is d = 0:134 in 4G1, d = 0:120 in 4G2, and d = 0:084 in 4G3.

category (category adjustment). The competitive process se-
lects another nonreset category and the OT is performed again
(Section III-B).

If is a weight vector of simplex
which does not belong to any other simplex in , it is presented
as a new training pattern, after the current one , in order to be
assigned to other categories. If another simplex covers
during the classification of may be removed when
is presented again, and this fact could lead to an infinite loop. In
order to avoid these loops, PTAM creates a new single-vector
category with when simplex is removed. Thus,
the OT ensures that no simplex covers . When is
presented again as a new input pattern, is removed, so that

cannot remove any simplex in the second presentation and
infinite loops are not possible.

D. Resonance

If passes both the PT and OT, then it has the right pre-
diction and it expanded towards without overlap, either re-
placing a new vector or creating a new simplex. However, in
order to avoid simplex proliferation, the new simplex is only
created if is not the first winner in the competition, i.e., if

. Otherwise, the expansion of is not
necessary, because if the training pattern were presented again,
it would resonate with (which is the first winner). If all the
training patterns with the same desired prediction were succes-
sively presented, PTAM would only create one single-simplex
category with that prediction, which is undesirable. However,
the training patterns are usually shuffled, so patterns with dif-
ferent predictions are mixed and this situation is not possible.

E. Creation of a New Category

If no category passes both the OT and PT, PTAM selects
the -nearest connectable weight vectors from belonging
to categories with prediction . The function [(23) in
Appendix III-A] determines if a weight vector is connectable
from . If there are or more connectable weight vectors
from with prediction , PTAM creates a new simplex
with and its -nearest connectable vectors. If is not
acute (Section III-B1) and it does not overlap with other
categories, PTAM creates a new category with only
one simplex and associated prediction (

, and ). If is acute, or

if it overlaps with other simplexes, then PTAM removes
and creates a new single-vector category with zero
simplexes , weight vector , and pre-
diction . If there are less than connectable
weight vectors with prediction is also added as a new
single-vector category.

PTAM needs at least training patterns with the same
prediction to create a polytope category. Otherwise, PTAM cre-
ates one single-vector category for each training pattern. During
the testing phase, the CCF of each single-vector category

depends on the Euclidean distance between its weight
vector and [see (9)]. Thus, is assigned to its nearest
single-vector category, i.e., PTAM behaves as a nearest neighbor
classifier. In this case, the number of available training patterns
is not enough to correctly learn the data set, which is severely
affected by the “curse of dimensionality” problem [29].

F. PTAM Training Phase

The training phase of PTAM can be summarized in the fol-
lowing steps.

1) Presentation of a new input pattern .
2) Calculation of CCFs: Calculate [see

(1) and (6)] for all the categories.
3) Competition: Select the category with and the

highest CCF: . If all the categories
are reset, then go to step 8).

4) OT: Expand towards either creating a new simplex
, only if is not an acute simplex (Section III-B1), or

replacing some weight vector in by . If overlaps
with other categories after expansion, reset ,
return it to its previous state, and go to step 3).

5) PT: If (the associated prediction of is
different from the desired prediction), reset .
Otherwise, go to step 7).

6) Category adjustment: If ( falls inside the CRR
of category ), then remove the simplex for which

. Include in the set of input patterns the vectors
of which do not belong to any

other simplex in . Go to step 3).
7) Resonance: Assign the input pattern to . If

expands towards creating a new simplex , and
( is the first winner), remove

. Go to step 1).
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Fig. 8. Border among the two predictions in data set form.

8) Creation of a new category: Create a new simplex with
and its -nearest connectable weight vectors with predic-

tion . If is not acute and it does not overlap with other
categories, create a new single-simplex category
with as its only simplex. If there are less than con-
nectable weight vectors from , or if is an acute simplex,
or if overlaps with other categories, remove and
create a new single-vector category with
. Go to step 1).

G. PTAM Testing Phase

The output of PTAM for each input pattern during the testing
phase is the associated prediction of the category with the
highest [see (1) and (6)]. The CCF of a single-vector cat-
egory is calculated using the Euclidean distance
between its weight vector and

(9)

where (Section III-A2). The competition selects
the category with the highest CCF

(10)

The output of PTAM is the prediction associated to
the winner category .

IV. EXPERIMENTAL SETTING

PTAM is tested and compared with other ART and non-ART
classifiers on a series of benchmark data sets (Table II). Sev-
eral data sets are 2-D, in order to show graphically the poly-
tope categories created by PTAM. Data sets with noise and cat-
egory overlap have been also used in order to test the behavior
of PTAM in these situations. As well, PTAM was tested with
real, high-dimensional data sets.

TABLE III
PARAMETER VALUES OF THE DIFFERENT ALGORITHMS

TABLE IV
SELECTED VALUES OF THE TUNING PARAMETERS (� IN THE ART NETWORKS,
C AND SPREAD (�) IN THE SVM) ON THE DIFFERENT VALIDATION SETS.
CIS-N AND T5-N STAND FOR CIS-NOISE AND T5-NOISE, RESPECTIVELY

A. The 2-D Data Sets

The CIS, chess (also known as “generalized XOR”), and
T3–T7 (sets 1–7 in Table II) are 2-D artificial data sets (Fig. 6),
with rectangular (chess and T4) and circular (CIS, T3, and
T5-T7) geometries. The CIS [30] data set was often used in
the ART literature. The results achieved with CIS are averaged
over seven circle sizes ranging from 10% to 70% of the unit
square area. Data sets T3-T7 were used in [20] as benchmarks
for FasArt, FAM, and DAM. Chess is another benchmark data
set frequently used in the literature [25], [31]. The number of
patterns for each prediction is proportional to its area for data
sets CIS, T5, and T6 (Table II), while predictions in the data
sets chess, T3, and T4 have the same number of patterns.

B. Noisy 2-D Data Sets

Data sets CIS-noise and T5-noise (sets 8 and 9 in Table II)
are generated by adding Gaussian noise to the CIS and T5 data
sets, respectively. Several noise levels were used, given by the
standard deviation of the Gaussian distribution, with values in
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Fig. 9. Error (in percent) against the number of categories on the validation sets in (a) CIS, (b) chess, (c) T3, and (d) T4 varying vigilance. The selected operating
point, with the best tradeoff between the error and the number of categories, is marked with an empty square.

the range 0.01 : 0.01 : 0.05 and 0.01 : 0.01 : 0.03 for CIS-noise
and T5-noise, respectively.

C. The 2-D Data Sets With Prediction Overlap

The data sets 4G1, 4G2, and 4G3 (labeled 10–12 in Table II)
are used in the literature [32] to evaluate classification algo-
rithms when predictions overlap. Each data set has four output
predictions, given by Gaussian probability distributions with
standard deviation . The overlap between them is de-
creasing with the distance between its centers and the center
of the unit square (Fig. 7).

D. Data Set With Irregular Geometry

Since the previous data sets have circular or rectangular ge-
ometries, we generated another 2-D data set, called form (set 13
in Table II) with irregular geometry and, therefore, not specially
suited to circular or rectangular category geometries. Form has
two predictions associated to the input patterns falling inside
and outside of the curve in Fig. 8, which is an example of a mask
used for the analysis of irregular textured regions in computer

vision [33]. Specifically, this curve is described by the following
parametric equations:

(11)

(12)

Here, is the mean radius of the curve and
and are pseudorandom numbers. The

curve is a circle for and its irregularity increases with .
We used and . In order to make the input pattern
labeling easier, a minimum radius was required.
The coordinates where scaled to have minimum 0 and
maximum 1.

E. Real, High-Dimensional Data Sets

Pima Indians diabetes (PID) and abalone (both available from
the University of California at Irvine (UCI) Machine Learning
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Fig. 10. Error (in percent) against the number of categories in (a) T5, (b) T6, and (c) T7 varying vigilance. The selected operating point is marked with an empty
square. (d) Average test results of each classifier.

Repository [34]), are real 8-D data sets (labeled 14 and 15 in
Table II) with two and three output predictions, respectively,
and they are reported as relatively difficult in the literature. FAM
achieved 38% error [25] and safe- ARTMAP [16] 32% error3

in PID. In abalone, 36% error was reported with multilayer per-
ceptron (MLP) [35] and 50% with FAM (367 categories) [32].
One input is discrete (three values) and the remaining seven in-
puts are continuous. The output is an integer number in the range

. For classification tasks, the input patterns must be
grouped in three output predictions, associated to outputs 1–8,
9–10, and 11–29. The input patterns in both data sets are pre-
processed in such a way that each component falls in the range

before feeding to the ART networks. The preprocessing
phase associated to the support vector machine (SVM) is the
usual mean removal and covariance equalization.

3In [16], the authors use 576 training and 192 testing patterns. We use 192
training, 384 validation, and 192 testing patterns for all the neural networks. We
are only interested in the comparison between them, so the small size of the
training set is not expected to reduce the significance of our experiments.

V. RESULTS

We developed experiments comparing PTAM with the most
popular ART networks on these data sets, including FAM [2],
GAM [3], DAM [4], EAM [5], and FasArt [6]. We also re-
ported the results achieved by SVM [36], which is a reference
for classification tasks. The parameter values of the different al-
gorithms are reported in Table III. FAM used the Weber law and
choice-by-difference choice functions: The results were very
similar, but slightly better using the Weber law. For the ART
classifiers, including PTAM, five training epochs were run on
data sets 1–7 and one training epoch was run on data sets 8–14,
in order to reduce the computational cost of the simulations.
FasArt used in data sets PID and abalone, because
when using the recommended value the categories are
too narrow and they do not cover the whole input space. We
used the SVM implementation provided by the Torch Machine
Learning Library [37] with polynomial, sigmoid, dot-product,
and Gaussian kernels, which usually provided the best results.
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TABLE V
TEST ERROR (�, IN PERCENT) AND #C [NUMBER OF WEIGHT VECTORS (#W) FOR PTAM AND NUMBER OF SUPPORT VECTORS (#SV) FOR SVM]

ACHIEVED BY EACH CLASSIFIER IN 2-D DATA SETS. THE BEST � AND #C ACHIEVED BY AN ART AND NON-ART CLASSIFIER ARE IN BOLD

For each tuning parameter, the value with the best average per-
formance over the validation sets was selected for each classifier
and data set (Table IV).

Some authors [25], [16] report the results achieved by the
ART networks with zero baseline vigilance . However,
the error and number of categories achieved by an ART network
strongly depend on the vigilance value, as Figs. 9 and 10 show.
We used cross validation in order to determine the best for
each data set. For data sets 1–12, 20 triplets, each one composed
of one training, one validation, and one test set, were created,
containing 10 000 randomly generated patterns in each set. For
each ART classifier (FAM, GAM, DAM, EAM, and FasArt),
we tried values in the range 0.00 : 0.02 : 0.98. For each vigi-
lance value, 20 versions of the classifiers were trained, one for
each training set, and they were tested on its corresponding val-
idation set. Figs. 9 and 10 represent the percentage of error rate
against the number of categories #C [number of weight vectors
(#W) for PTAM or support vectors (#SV) for SVM], with the
different vigilance values and for each data set, averaged over
the 20 validation sets. The vigilance value which provides the
best tradeoff between the error and #C on the validation set (op-
erating point, marked with an empty square in Figs. 9 and 10)
was selected for the test phase. For example, the FAM operating
point for data set CIS [Fig. 9(a)] has 2.15% error, 171 categories,
and . The best results were usually achieved with high
vigilance, as reported in Table IV. GAM is a noticeable excep-
tion, because its error and #C increase with the vigilance, so its
selected value is often .

The 20 classifiers trained with the selected vigilance value
were tested on the 20 test sets. The average error rate and #C
over the test sets are reported in Table V and represented in
Fig. 10(d). The same experimental methodology is used with
the noisy 2-D data sets CIS-noise and T5-noise, and with the
overlap data sets 4G1, 4G2, and 4G3.

Fig. 11(a) and (c) shows the CRRs created by PTAM for data
sets chess and T5, respectively, which are examples of rectan-
gular and circular geometries respectively. Fig. 11(b) and (d)
shows the weight vectors and the borders among predictions
created by PTAM, which achieve quite accurately the de-
sired borders. The category borders (line segments in ) in
Fig. 11(a) and (c) compose a piecewise linear approximation to

Fig. 11. Examples of categories created by (a) PTAM and (b) classification
regions for data set chess. (c) and (d) Idem for data set T5.

the borders among the output predictions. The lower left corner
of Fig. 11(a) shows that sometimes polytope categories may not
cover the whole input space. However, the regions not covered
are assigned to the right output prediction, as Fig. 11(b) shows.

A. The 2-D Data Sets

Table V reports the test results of the seven classifiers for 2-D
data sets 1–7. SVM achieves the lowest error for all the data
sets except in T4. However, SVM generates in average more
SVs than categories in PTAM, FAM, GAM, and DAM. PTAM
achieves the lowest error among the ART networks in five of
seven data sets (CIS, T3, T5, T6, and T7). Its error (4.1%) is
clearly lower than the other networks in data set T5 (above
5.5%), which is the most complex one. PTAM outperforms the
circular ART networks (GAM and EAM) both in rectangular
and circular data sets (GAM achieves the equal error in T3).



AMORIM et al.: PTAM: PATTERN CLASSIFICATION WITHOUT VIGILANCE BASED ON GENERAL GEOMETRY CATEGORIES 1317

TABLE VI
ERROR (�, IN PERCENT) AND #C ACHIEVED IN [20] BY FAM, DAM, AND

FASART IN CIS AND T3–T7

Also, PTAM achieves the second lowest error in the rectangular
data set chess, outperforming FAM. PTAM creates an interme-
diate number of vectors, less than DAM, EAM, and FasArt, but
more than GAM and FAM.

DAM achieves the lowest error in data sets chess and T4,
which have rectangular geometry. FAM achieves an error very
similar to, although slightly higher than, DAM in all the data
sets. They achieve errors above PTAM, GAM, and EAM in cir-
cular data set T3. FAM creates less categories than DAM, ex-
cept in chess and T3. GAM and EAM achieve similar errors,
which are high compared to PTAM, DAM, and FAM, specially
in the rectangular data sets. However, EAM creates the highest
number of categories and GAM the lowest one. Finally, FasArt
achieves the highest error both in circular and rectangular data
sets, with a high number of categories.

Results in data sets CIS and T3–T7 are different from [20]
(Table VI), where the reported errors are higher, and the number
of categories is lower, than in our experiments. Some possible
reasons are as follows: 1) the differences in the number of
training and test patterns (2000 patterns in [20]) and in the
category populations for some data sets and 2) we optimize the
vigilance value in the ART networks ( in our simulations
except for GAM) while FAM, DAM, and FasArt use in
[20]. Hence, we achieve lower error and higher #C with FasArt,
FAM, and DAM. This may be the cause of the good results
achieved by FAM and DAM in our simulations, compared to
FasArt, with respect to the cited paper.

It is interesting to compare the number of parameters
stored by the different networks. In the case of PTAM,

, where and are, respectively, the
number of simplexes and weight vectors (see Appendix IV).
Since each category in PTAM requires several vectors, it usu-
ally stores more parameters than the ART networks. This is ex-
pectable, since the polytope categories of PTAM are more flex-
ible than hyperbox categories. Table VII reports , divided by

(dimension of the input space), for PTAM, FAM, and DAM,
in the seven 2-D data sets. In average, PTAM stores 65% more
parameters than FAM, for which ( is the number
of categories). On the other hand, the number of parameters of
DAM is given by , and it stores 80% more pa-
rameters than PTAM (DAM stores less parameters than PTAM
only in data sets chess, T3, and T4).

B. Data Sets With Noise

All the classifiers increase their error and #C with the noise
level, as reported in Table VIII and Fig. 12 in data sets CIS-noise
and T5-noise. The table shows also the Bayes error [38] in

TABLE VII
NUMBER OF CATEGORIES (N ), SIMPLEXES (N ), AND PARAMETERS N

DIVIDED BY THE DIMENSION n OF THE INPUT SPACE (n = 2 FOR ALL THE

DATA SETS IN THE TABLE) STORED BY PTAM, FAM, AND DAM

Fig. 12. Average error (in percent) against the number of categories in
(a) CIS-noise and (b) T5-noise. Each point corresponds to a different noise
level (0.00 : 0.01 : 0.05 in CIS-noise and 0.00 : 0.01 : 0.03 in T5-noise).

both data sets. GAM achieves the lowest error (10.3% with
the highest noise level) in CIS-noise for all the noise levels.
In T5-noise, GAM achieves slightly higher error than SVM
(23.8%, equal to the Bayes error). However, SVM uses a huge
number of SVs, while the #C of GAM increases very slowly
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TABLE VIII
TEST RESULTS FOR 2-D DATA SETS WITH NOISE. THE BEST ERROR (�, IN PERCENT) AND #C ACHIEVED BY AN ART AND NON-ART CLASSIFIER ARE IN BOLD

with the noise level. Remarkably, GAM creates less categories
in CIS-noise with noise level 0.05 than the other classifiers
without noise. FAM, DAM, and EAM report similar number of
categories for each noise level, although DAM achieves slightly
lower error than FAM and EAM. FasArt achieves similar error
to DAM in CIS-noise with high noise level, but with more
categories. PTAM achieves higher error than the other ART
networks for the different noise levels, and it creates rather high
number of categories, but lower than FasArt and SVM.

C. Data Sets With Prediction Overlap

In the overlap category data sets 4G1, 4G2, and 4G3, PTAM
also reports poor performance (Table IX). The first row in this
table reports the Bayes errors for each data set. GAM shows
the best global behavior, because it achieves the Bayes error
on each data set with a very low number of categories. FasArt
and SVM also achieve the Bayes error, but their complexity
(number of categories or SVs) is higher—specially SVM. DAM
achieves higher error than GAM with a similar complexity.
EAM achieves higher error than DAM, with much more cate-
gories. FAM achieves clearly higher error than EAM and DAM,
with an intermediate number of categories. PTAM achieves
higher error than the other classifiers, and it only creates less
vectors than FasArt and SVM.

D. Irregular Geometry Data Set

We also compared PTAM with the best rectangular ART
networks (DAM and FAM), and with the best circular ART
network (GAM), in the irregular data set form. Fig. 13(a)
shows an example of the polytope categories and Fig. 13(b)
the borders among predictions created by PTAM for this data
set. FAM, DAM, and GAM were trained and tested using the
same cross-validation methodology as in the other 2-D data
sets. Fig. 14 shows the validation results achieved by FAM,

TABLE IX
TEST ERROR (�, IN PERCENT) AND #C IN DATA SETS WITH PREDICTION

OVERLAP. THE BEST � AND #C ACHIEVED BY AN ART AND

NON-ART CLASSIFIER ARE IN BOLD

DAM, and GAM (varying in the range 0.00 : 0.02 : 0.98), and
PTAM, and Table X reports the test results. PTAM achieves
lower test error (2.3%) than the best rectangular and circular
ART networks. GAM achieves higher error than PTAM for
all the vigilance values, and the test error is twice the error of
PTAM. FAM and DAM need about 1000 categories to achieve
the same error as PTAM (Fig. 14). We selected two operating
points for DAM and other two points for FAM (marked with
empty squares in the figure). DAM achieves higher error (2.7%)
than PTAM using , and more categories (572). Using

, DAM also achieves higher error (3.9%) than PTAM,
with slightly less categories (270). FAM achieves higher error
than PTAM for the two selected vigilance values.

E. Real, High-Dimensional Data Sets

High-dimensional data sets PID and abalone have a reduced
number of patterns, so the usual experimental procedure [16]
is Kfold cross validation with . In order to optimize the
vigilance parameter, we created 20 training, 20 validations, and
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Fig. 13. Example of (a) categories and (b) classification regions and weight
vectors created by PTAM in form.

Fig. 14. Average validation error (in percent) and #C achieved by FAM, DAM,
and GAM (varying vigilance) and by PTAM in data set form.

20 test sets, containing 25%, 50%, and 25% of the input pat-
terns, respectively, randomly selected from the original data set.
Specifically, we used 192 training, 384 validations, and 192 test
patterns in PID, and 1044 training, 2088 validations, and 1044
test patterns in abalone. Baseline vigilance values on the set

were tried, and the value with the

TABLE X
TEST ERROR (IN PERCENT) AND #C ACHIEVED BY PTAM AND THE BEST

RECTANGULAR AND CIRCULAR ART NETWORKS (FOR WHICH THE VALUE OF ��

IS REPORTED) IN THE FORM DATA SET. THE BEST ERROR AND #C ARE IN BOLD

best average tradeoff between the error and #C over the 20 val-
idation sets was selected (Table IV).

Table XI reports the average results of each classifier with its
best vigilance value over the 20 test sets. SVM is clearly the
best classifier in PID (24%) and abalone (34%), with 52% and
73% of the training patterns as SVs, respectively. In the PID
data set, this error was also achieved by AFC [25] using 576
training and 192 test patterns, and with zero vigilance. FasArt,
DAM, and FAM achieve the lowest error among the ART net-
works (about 30%), but FAM creates twice the number of cat-
egories (60) than FasArt (29) and DAM (25). GAM and EAM
achieve higher error (34%–37%), with few categories. PTAM
achieves the highest error (43%) and number of categories (74%
of the training patterns). In the abalone data set, FAM and DAM
achieve the lowest error (43%), but FAM creates the highest #C
(370), and DAM creates only 131 categories. FasArt and EAM
achieve higher error than FAM and DAM, with less categories.
PTAM achieves 50% error, only below GAM (57%), but it is
similar to the one reported by FAM (50%) in [32]. Also, PTAM
creates the lowest number of categories (27) among the ART
networks.

VI. DISCUSSION

The average test results (error and #C) obtained by the dif-
ferent classifiers in the 2-D data sets 1–7 are reported in the two
bottom rows of Table V and represented in Fig. 10(d). SVM
achieves the lowest global error (0.4%), with a high number of
SVs (298). PTAM achieves the lowest average error among the
ART networks (1.6%), and the lowest error in five of seven data
sets. In the other two data sets, PTAM does not achieve much
higher error than the best ART network. Only GAM and FAM
create less categories (44 and 137, respectively) than PTAM
(188). DAM achieves the second lowest error (2%), with #C
(193) similar to PTAM. However, DAM only achieves lower
error than PTAM in the rectangular data sets chess and T4. FAM
achieves higher error than DAM, and less categories. EAM
achieves equal error as GAM, and it creates the highest #C.
FasArt achieves the highest error (3.8%) and #C. PTAM also
achieves lower error than the best rectangular and circular ART
networks (DAM and GAM), with a low number of categories,
on the irregular geometry data set form (Table X).

PTAM creates a new simplex during resonance only if the
resonant category is not the most active one (Section III-D). We
developed experiments in which a new simplex is created every
time an input pattern falls outside the resonant category. In these
experiments, the average test error and #W achieved by PTAM
in data sets 1–7 are 1.4% and 262 weight vectors. The error
reduces by 0.2, but the number of weight vectors #W increases
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TABLE XI
TEST ERROR (�, IN PERCENT) AND #C IN HIGH-DIMENSIONAL DATA SETS PID AND ABALONE.

THE BEST � AND #C ACHIEVED BY AN ART AND NON-ART CLASSIFIER ARE IN BOLD

Fig. 15. (a) Error and (b) number of vectors achieved by PTAM against �
in data sets T4 and T5.

by 39%. Thus, the creation of new simplexes in all the cases
does not significantly reduce the error rate, but it contributes to
category proliferation. This result justifies the creation of a new
simplex only if the resonant category is not the most active one.

We also did experiments related to the parameter used to
discard acute simplexes (Section III-B1). Fig. 15 shows the typ-
ical behavior of error and number of vectors achieved by PTAM
varying in T4 and T5 (they were selected as representants
of rectangular and circular geometries, but we found the same

Fig. 16. Difference between the error (in percent) achieved by each ART clas-
sifier and the average error for each data set, grouped in rectangular and circular
data sets.

behavior in the other data sets). High values increase the
error and reduce the number of vectors, because too many sim-
plexes are discarded, so PTAM is unable to fit the borders among
the output predictions. With low values, PTAM discards
few simplexes, so its learning ability is higher, the error is low,
and the number of vectors is high. If , no simplex is
discarded, so the number of simplexes and vectors boosts [left
end of Fig. 15(b)]. Therefore, a low value must be used to
discard only the acute simplexes. Based on the experiments de-
veloped with several data sets, we selected the value
degree as acceptable. Given that the minimum angle to consider
a simplex as acute does not seem to depend on the data set, this
value should be valid for any data set, so it does not need to be
optimized via cross validation.

It is interesting to evaluate the behavior of each classifier de-
pending on the data set geometry. Table V reports that PTAM is
the ART network with the lowest standard deviation in the error
(1.1) compared to EAM (1.5), FAM, GAM, and DAM (1.7), and
FasArt (2.0). Thus, the results of the ART networks are more de-
pendent on the data set than the results of PTAM. We grouped
the results of each classifier for rectangular and circular data
sets. For each one, we calculated the average error over all the
ART networks. Then, we calculated the difference between the
error achieved by each classifier and the average error (this dif-
ference is negative if the error is lower than the average, and it
is positive otherwise). Fig. 16 shows the average differences for
each classifier over the circular (CIS, T3, and T5–T7) and over
the rectangular data sets (chess and T4). FAM and DAM have
high negative difference for the rectangular data sets and zero
difference for the circular ones. The circular classifiers (GAM
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and EAM) have negative (positive) differences for circular (rect-
angular) data sets. FasArt has high positive difference for rectan-
gular and circular data sets. Thus, the behavior of both circular
and rectangular classifiers depend on the data set geometry, and
their average results are better (negative differences) for data
sets with their equal geometry. PTAM is the only network with
high negative difference for both geometries of data sets, be-
cause its irregular polytope categories are not specially suited
to any particular geometry.

The good results of PTAM are possible without vigilance and,
consequently, without any parameter tuning. This feature makes
PTAM easier to use than the other ART networks, because this
tuning often requires cross-validation trials, which may have an
important cost in processing time. On the other hand, these trials
require validation sets, so that the number of available training
patterns is reduced, which may difficult learning. This might be
a drawback in real data sets, where the number of available input
patterns is often limited by the cost of each data acquisition.

The results on data sets CIS-noise and T5-noise (Table VIII),
and 4G1, 4G2, and 4G3 (Table IX) show that PTAM achieves
higher error than the other ART networks. PTAM also creates
a high number of categories, although it is lower than FasArt
and, specially, SVM. PTAM approximates the borders among
the output predictions by strictly following the information con-
tained in the training set, both in the category expansion and ad-
justment steps. In the presence of noise or prediction overlap,
the input patterns belonging to different categories are mixed
and they break simplexes in the category adjustment step, which
leads to the creation of noisy single-vector categories. Future
work will use statistical information in the category expansion
and adjustment steps in order to make PTAM robust to noise
and category overlap. The behavior of PTAM for real, high-di-
mensional data sets PID and abalone (Table XI) is worse than
the other ART networks, with the highest error in data set PID,
and a variable number of categories.

A. Computational Complexity

The computational cost of each iteration (processing of a
training pattern) in PTAM is the following. The cost of functions

and [see (3) and (2), respectively] is , be-
cause they use -order determinants [39]. In order to evaluate if
the input pattern falls inside the simplex, values of
must be calculated, which is . If the pattern falls outside
the simplex, but inside the hypersphere [see (4)], must
be calculated for the hyperplanes in . Since determi-
nants [see (17)] must be calculated, is , so

[see (4)] is . If the pattern falls inside the hyper-
sphere, [see (5)] is . Therefore, and
are . Since the system of linear equations in [see
(22)] is , the function [see (23)] is , because it
requires to calculate for the hyperplanes of a simplex.
The calculation of set (Section III-B) is , because

values of must be calculated.4 The func-
tion [see (24)] for the OT is , because values
of must be calculated, so the creation of a new simplex is

4Each polytope categoryC withN > 0 is defined by (n+1)+(N �1) =
n + N weight vectors.

. The removal of acute simplexes is [see (7)], be-
cause it requires to calculate angles, which are each
one. The vector replacement step is , because
values of (which is ) must be calculated, but the
OT for the modified simplex is also . The costs of the PT,
category adjustment, and resonance steps do not depend on .
The creation of a new category requires calcula-
tions of , which is , in order to select the connectable
vectors from , and the OT for the new simplex, which is .

Overall, the cost of PTAM for each iteration is . While
this high cost makes the use of PTAM with high-dimensional
data sets difficult, for low, its speed is comparable to the other
ART networks, which require cross-validation trials. Specifi-
cally, the current implementation of PTAM takes about 40 s.
for the CIS data set (10 000 training and 10 000 test patterns)
on a general purpose personal computer (PC) Pentium IV with
512-MB random access memory (RAM), and it runs much faster
than DAM (560 s), three times slower than GAM and EAM
(15 s), and eight times slower than FAM and FasArt (5 s).

VII. CONCLUSION AND FUTURE WORK

This paper analyzes the utility of general, irregular geome-
tries for the internal categories of the ART networks. The cat-
egories in PTAM are -dimensional polytopes whose outlines
are a piecewise linear approximation to the borders among the
output predictions. During the learning phase, the polytope cate-
gories are expanded towards the input pattern, covering only the
regions of the input space populated by training patterns with
equal category prediction. They can expand without overlap, as
opposite to the other ART networks, so the category expansion
is naturally limited by the other categories, instead of the cat-
egory size. The vigilance parameter is not required, so PTAM
has no tuning parameter.

Each polytope category is represented internally as a set of
simplexes, whose vertices are training patterns. The CCF is 1
inside the polytope and decreasing with the distance to the poly-
tope outside it. The category with the highest CCF tries to ex-
pand towards the input pattern avoiding category overlap, either
creating a new simplex or replacing a vertex by the input pattern.
A simplex is removed when a training pattern with a different
prediction falls inside it. When no category with the desired pre-
diction can expand towards the input pattern without overlap,
PTAM creates a new single-vector category.

Experimental results on a complete collection of 2-D data sets
show that PTAM achieves lower error than the leading ART net-
works, with a similar number of categories, and they achieve
higher error than SVM. The irregular geometry of categories in
PTAM provides less dependence on the data set geometry (cir-
cular, rectangular) than the other ART networks. Hence, PTAM
is clearly better than the best rectangular and circular ART net-
works on a data set with irregular geometry. We would like to
emphasize that PTAM achieves these results without the vig-
ilance parameter. The absence of tuning parameters in PTAM
reports the following advantages. 1) The nonexpert user is not
concerned about the internal operation of PTAM, which is easier
to use. Although ART networks can use zero vigilance, it may
not be the best value for a given data set, so it must be tuned, e.g.,
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using cross validation. 2) The input patterns devoted to cross
validation sets cannot be used for training. This fact may be im-
portant for real data sets, which often have a reduced number
of input patterns. PTAM is rather sensible to noisy outliers or
prediction overlap and it does not outperform the leading ART
networks on real, high-dimensional data sets, which suggests
that its ability to model complex borders among categories re-
duces with the dimensionality of the input space.

The main objective of future research is to simplify PTAM
in order to decrease its computational cost and to get an effi-
cient implementation. We have analyzed the behavior of PTAM
when category overlap is allowed [40], and the conclusion is
that categories with irregular geometry do not work better if they
overlap. In our future work, we intend to avoid the idea that cate-
gories cover regions where predictions overlap, without simplex
breaking. Another objective is to adapt the category overlap to
the distribution of training patterns, in order to reduce the sen-
sitivity to noise and prediction overlap. We are also working to
replace simplexes by hyperplanes in the definition of the poly-
topes, in order to overcome some limitations in the category ex-
pansion associated to simplexes. Distributed learning with poly-
tope geometries is another interesting issue for future research.
After these improvements, we will evaluate the performance of
PTAM using additional real-world data sets.

APPENDIX I
EQUATION OF THE HYPERPLANE DEFINED BY VECTORS

Let be the hyperplane in defined by weight vectors
, and the equation of . From

elementary geometry, we know that every point is
a linear combination of vectors in the set

, so which verify

(13)

Thus, the set of vectors
is linearly dependent, and they compose a sin-

gular matrix

(14)

where is the th component of . Equation (14) is
the definition of in (3) (Section III-A1). On the other
hand, must imply that falls in the side of
inside the simplex , and implies that falls
outside . Let be the vertex of which does not belong
to , and the sign function (Section III-A1). Then,
it must be if falls inside
the simplex, and when falls
outside the simplex. In order to meet this condition, the equation
of hyperplane can be written as

[see (2)], so that .

APPENDIX II
CALCULATION OF THE DIRECTION VECTOR OF A HYPERPLANE

Let [see (2)] be the equation of hyperplane .
In order to calculate its direction vector , this equation must
be transformed into the following form:

(15)

Equation implies [if
, and by (3)]. Developing the

determinant in (3) by the first row and equaling to (15)
yields

(16)

where is the determinant of matrix in (3) after removing
row 1 and column . If we denote , then

(17)

Equaling the two sides of the last equality and denoting by
the unitary vector in dimension yields

(18)
The norm of the hyperplane direction vector is used to

calculate the distance between an input pattern and the hyper-
plane [see (4)].

APPENDIX III
GEOMETRIC IMPLEMENTATION OF THE OT

The overlap between a simplex and a line segment is tested by
using geometric techniques. In order to test if a weight vector is
“connectable” from the input pattern, the line segment between
them cannot overlap with other simplexes. On the other hand, in
order to create a new simplex, or to replace a weight vector by
the input pattern, the new or modified simplex cannot overlap
with other categories. In the following, we will describe the two
situations.

A. Overlap Between a Line Segment and a Simplex

The line segment and simplex in category
overlap only if the former intersects with some hyperplane

of the latter (note that weight vectors can only be simplex
vertices, so they cannot fall inside a simplex). The intersec-
tion between the segment and the hyperplane
defined by vectors can be tested solving
for the following vector equation (obtained



AMORIM et al.: PTAM: PATTERN CLASSIFICATION WITHOUT VIGILANCE BASED ON GENERAL GEOMETRY CATEGORIES 1323

Fig. 17. Examples in IR and IR of intersection and nonintersection be-
tween the segment w � w and hyperplanes (w ;w ) in IR and
(w ;w ;w ) in IR .

from the parametric equations of the straight line and the
hyperplane):

(19)

The solution of this system of equations
is a valid intersection point only if it falls inside the bounded
hyperplane area whose border is defined by the vectors

of , and if it falls in the segment between
and (Fig. 17). This imposes the following conditions to

the solution of (19):

(20)

(21)

If satisfying (19)–(21), the segment
and the hyperplane intersect. We can define the

function (intersection segment–hyperplane) in the following
way:

(19)–(21) have a solution
otherwise

(22)

The function if line segment and hy-
perplane intersect and , otherwise. Fi-
nally, the overlap between line segment and the simplex

is given by

otherwise
(23)

B. Overlap Between a Simplex and a Category

If category is a single-vector category de-
fined by the vector , the simplex and overlap if

. If is a polytope category , they
overlap only if there exists a simplex that overlaps
with . Let function (overlap between two simplexes)
be defined by if simplexes and
overlap and , otherwise. Since the vertices of

a simplex cannot be inside another simplex, the simplexes
and overlap only if a line segment of and a hyperplane
of intersect. Specifically, if ,
such as [ is defined in (23)], then
the line segment and the simplex intersect, so

. Note that if a line segment of and a
hyperplane of intersect, then some line segment of
intersects with a hyperplane of , which is the previous case.
The overlap function between the simplexes
and is given by

otherwise
(24)

Finally, overlap between the simplex and the category
is given by the function , defined by

(25)

where the function is given by

(26)

Thus, if is a single-vector category, it overlaps if
, so . Otherwise, if is not

a single-vector category , it overlaps if some
simplex in overlaps .

APPENDIX IV
NUMBER OF PARAMETERS IN PTAM

Since each category in PTAM has a variable number of sim-
plexes, its number of weight vectors (vertices) is also variable.
If PTAM has categories, simplexes, and weight vec-
tors, the number of parameters which it stores is as follows.

• For each category, the indexes of their simplexes: Given
that category has simplexes, the number of param-
eters to store for the categories is ,
because each simplex belongs to exactly one category and
there are simplexes.

• For each simplex, the indexes of their weight vectors: Since
each simplex has weight vectors, and there are
simplexes, the number of parameters is (note
that , since vectors may be shared between
simplexes).

• For each weight vector, its components: Since there are
weight vectors, the number of parameters is .

Finally, the total number of parameters stored by PTAM is

(27)

Comparatively, the number of parameters used by FAM is
(each internal category is defined by a -di-

mensional weight vector, due to complement coding). Finally,
each internal category in DAM [4, p. 804] is defined by
weights and an instance counter ,
so the number of parameters in DAM is .
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